Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 382(6671): 698-702, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943931

RESUMEN

Time-reversal symmetry (TRS) is pivotal for materials' optical, magnetic, topological, and transport properties. Chiral phonons, characterized by atoms rotating unidirectionally around their equilibrium positions, generate dynamic lattice structures that break TRS. Here, we report that coherent chiral phonons, driven by circularly polarized terahertz light pulses, polarize the paramagnetic spins in cerium fluoride in a manner similar to that of a quasi-static magnetic field on the order of 1 tesla. Through time-resolved Faraday rotation and Kerr ellipticity, we found that the transient magnetization is only excited by pulses resonant with phonons, proportional to the angular momentum of the phonons, and growing with magnetic susceptibility at cryogenic temperatures. The observation quantitatively agrees with our spin-phonon coupling model and may enable new routes to investigating ultrafast magnetism, energy-efficient spintronics, and nonequilibrium phases of matter with broken TRS.

2.
Adv Mater ; 35(32): e2302974, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37334883

RESUMEN

Photonics in the frequency range of 5-15 terahertz (THz) potentially open a new realm of quantum materials manipulation and biosensing. This range, sometimes called "the new terahertz gap", is traditionally difficult to access due to prevalent phonon absorption bands in solids. Low-loss phonon-polariton materials may realize sub-wavelength, on-chip photonic devices, but typically operate in mid-infrared frequencies with narrow bandwidths and are difficult to manufacture on a large scale. Here, for the first time, quantum paraelectric SrTiO3 enables broadband surface phonon-polaritonic devices in 7-13 THz. As a proof of concept, polarization-independent field concentrators are designed and fabricated to locally enhance intense, multicycle THz pulses by a factor of 6 and increase the spectral intensity by over 90 times. The time-resolved electric field inside the concentrators is experimentally measured by THz-field-induced second harmonic generation. Illuminated by a table-top light source, the average field reaches 0.5 GV m-1 over a large volume resolvable by far-field optics. These results potentially enable scalable THz photonics with high breakdown fields made of various commercially available phonon-polariton crystals for studying driven phases in quantum materials and nonlinear molecular spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...